Let h
be the function `hh(x)=
x^(2^t) mod
N` whereN
where:
- input—`x` is input—
x
is any 1024-bit integer - modulus—`N = 124066695684124741398798927404814432744698427125735684128131855064976895337309138910015071214657674309443149407457493434579063840841220334555160125016331040933690674569571217337630239191517205721310197608387239846364360850220896772964978569683229449266819903414117058030106528073928633017118689826625594484331` is —N=124066695684124741398798927404814432744698427125735684128131855064976895337309138910015071214657674309443149407457493434579063840841220334555160125016331040933690674569571217337630239191517205721310197608387239846364360850220896772964978569683229449266819903414117058030106528073928633017118689826625594484331 is fixed
- time parameter—`t = 2^30` is —t=2^30 is fixed
The challenge is to compute h(x)
as as fast as possible.