Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Let h be the function `hh(x)= x^(2^t) mod N` whereN where:

  • input—`x` is inputx is any 1024-bit integer
  • modulus—`N = 124066695684124741398798927404814432744698427125735684128131855064976895337309138910015071214657674309443149407457493434579063840841220334555160125016331040933690674569571217337630239191517205721310197608387239846364360850220896772964978569683229449266819903414117058030106528073928633017118689826625594484331` is N=124066695684124741398798927404814432744698427125735684128131855064976895337309138910015071214657674309443149407457493434579063840841220334555160125016331040933690674569571217337630239191517205721310197608387239846364360850220896772964978569683229449266819903414117058030106528073928633017118689826625594484331 is fixed
  • time parameter—`t = 2^30` is t=2^30 is fixed

The challenge is to compute h(x) as  as fast as possible.