
Report:

VDF proof feasibility study

For Justin Drake

Of Ethereum Asia Pacific Limited
80 Robinson Road #08-01
Singapore
068898

Reference P0137-R-004b

Date October 12, 2018

Prepared by Rupert Swarbrick

Argon Design Ltd.
St John’s Innovation Centre
Cowley Road, Cambridge
CB4 0WS

Tel: +44 (0)1223 422355
Fax: +44 (0)1223 422356

www.argondesign.com

P0137-R-004b Page 1 of 15

www.argondesign.com

VDF proof feasibility study

Contents

1 Introduction 3

2 Possible algorithmic improvements 4
2.1 Schemes based on Wesolowski’s paper 4
2.2 Another approach: Lim and Lee 6

3 Practical considerations for implementing the prover 8
3.1 Getting blocks of bits from the division 8
3.2 Parallelism when multiplying by pre-computed results 8
3.3 Parallelism in algorithms 2 and 3 9
3.4 Parallelism in Algorithm 4 10
3.5 Parallelism in Lim and Lee’s algorithm 10

4 ASIC multiplication architectures 11

5 Capping the speed of an ASIC 12

6 Conclusions and future work 14

P0137-R-004b Page 2 of 15

VDF proof feasibility study

1 Introduction

This study investigates the high-level design of an ASIC to compute VDF proofs for the next
Ethereum protocol. The calculation needed for the proof is to compute hE where E = b2τ/Bc
in the group, G, of units in Z/N for some h, τ, N and B. For concreteness, elements of G
are about 2048 bits in size and B is a prime, around 128 bits in size.

In order to put numbers in our calculations, recall that the VDF evaluator module we have
proposed will run at around 300 MHz, taking three cycles to perform one group operation.
As such, it might perform 108 group operations per second. Ethereum described a VDF
evaluation phase that should take about 85 minutes: five times as long as the 17 minute
RANDAO phase. In that time, the VDF evaluator could perform 85 × 60 × 108 = 5.1 × 1011
group operations. This number gives a practical value for τ. The aim is for the prover to
run in around 1% of the time of the evaluator, which gives it 51 seconds.

Unlike the VDF itself, the proof calculation can be parallelised. There are two schemes
described in [Wes18] (hereafter, Algorithm 5 and Algorithm 6). We at Argon (mostly Peter
de Rivaz) have suggested some further algorithms, which will be included in the report.

The report starts with notes about different algorithms and their costs (in number of group
operations and storage). It then describes some practical considerations that the prover
has to take into account: how exactly should Wesolowski’s get_block be implemented?
How much parallelism can we wring out of each algorithm? The last main section describes
different multiplier architectures the prover might use. This section is incomplete: we
believe that finding the definitive answer about the best approach to use needs more work.

The final section of the report is on a slightly different topic: can the prover ASIC detect
when its being overclocked? This would avoid having to discard all but the fastest chips at
the fab, at a cost of complication and slight supply chain risk.

P0137-R-004b Page 3 of 15

VDF proof feasibility study

2 Possible algorithmic improvements

2.1 Schemes based on Wesolowski’s paper
The first scheme in [Wes18] (called Algorithm 5 there and reproduced as Algorithm 1 below)
is a starting-point for all the other algorithms considered in the report. There are two parts
to the computation: raising an array of elements, yb, to the power 2k and multiplying
successive elements by pre-computed coefficients C. The number of group operations
that must be performed is k2k + τ/k.

for b ∈ {0, . . . ,2k − 1} do
yb ← 1;

end
for j←  − 1 to 0 do

for b ∈ {0, . . . ,2k − 1} do
yb ← y2

k

b ;
end
for ← bτ/kc to 0 do

b← get_block( + j);
yb ← yb · C;

end
end
← 1;
for b ∈ {0, . . . ,2k − 1} do

←  · ybb;
end

Algorithm 1: Wesolowski’s Algorithm 5

The improved scheme in the appendix of [Wes18] (called Algorithm 6 there) improves the
complexity by replacing the k2k operations with 2k+1 operations. Peter at Argon came
up with a simplified version of the scheme (with the same complexity), reproduced as
Algorithm 2 below.

← 1;
for j←  − 1 to 0 do

for b ∈ {0, . . . ,2k − 1} do
yb ← 1;

end
for ← bτ/kc to 0 do

b← get_block( + j);
yb ← yb · C;

end
t← 1;

← 2
k
;

for b← 2k − 1 to 1 do
t← t · yb;
←  · t;

end
end

Algorithm 2: A simplified algorithm with complexity 2k+1 + τ/k

P0137-R-004b Page 4 of 15

VDF proof feasibility study

To see why this is equivalent, imagine moving the calculation of ybb into the loop and then
switching around the order of evaluation so that we first raise the new factors in yb to
the power b and then square repeatedly to raise just one variable to the power 2k. Of
course, once we’ve raised the new factors of each yb to the power b, we can multiply them
together before raising to the power 2k. The last trick is to re-order the product that we’re
trying to compute as

 =
2k−1
∏

b=0

(yb)b = yN−1 (yN−1 · yN−2) (yN−1 · yN−2 · yN−3) · · · (yN−1 · yN−2 · · ·y1)

where N = 2k. The values of the variable t in the algorithm are the successive bracketed
terms in the product and the values of  are partial products, working from the left.

Note that a practical implementation wouldn’t need to do the first loop (initialising yb to 1):
instead it would keep 2k single-bit flags denoting whether yb had been initialised. These
would be used to select the input to be multiplied by C and, if there was no block that hit b
for a particular j, to disable the update of t later. Clearing these flags would require writing
to 2k bits, rather than 2k group elements.

One potential problem with this algorithm is the tight loop to update  and t. A practical
implementation would have to split this up to allow parallelism: we expand on this in a
later section.

A slight simplification of Algorithm 2 (not one that will make a significant difference to
execution speed) is to remove the line that raises  to the power 2k. We set t to  instead
of one so that the 2k− 1 multiplications of  by t calculate the power for free. This is shown
below in Algorithm 3.

← 1;
for j←  − 1 to 0 do

for b ∈ {0, . . . ,2k − 1} do
yb ← 1;

end
for ← bτ/kc to 0 do

b← get_block( + j);
yb ← yb · C;

end
t← ;
for b← 2k − 1 to 1 do

t← t · yb;
←  · t;

end
end

Algorithm 3: Getting rid of a step in Algorithm 2

Algorithms 2 and 3 have the same complexity, with τ/k+ 2k+1 group operations. Trying to
speed things up further, note that accumulating into yb and then updating t by multiplying
by yb is slightly redundant: what if we could just multiply t by the C’s instead, skipping the
last multiplication? This would remove a multiplication and would avoid having to store all
the yb’s (lots of large group elements).

Of course, the problem is that then we must iterate over the values of b in descending or-
der. Finding the appropriate values of  for a given b essentially means inverting get_block.
This is the approach in Algorithm 4, which inverts get_block by storing a list of indices for
each b.

P0137-R-004b Page 5 of 15

VDF proof feasibility study

← 1;
for j←  − 1 to 0 do

for b ∈ {0, . . . ,2k − 1} do
Ab ← [];

end
for ← bτ/kc to 0 do

b← get_block( + j);
Ab ← append(Ab, );

end
t← ;
for b← 2k − 1 to 1 do

for  ∈ Ab do
t← t · C;

end
←  · t;

end
end

Algorithm 4: Avoiding the accumulation into separate yb’s

The complexity in group operations is τ/k+ 2k. This is because the line that updates t runs
once for each  (albeit in a strange order), so this happens τ/k times for each j and τ/k
times in total. The other group operation (updating ) runs 2k times.

Of course, this isn’t the whole story: we imagine a chip with pipelining that can do one
group operation per cycle, and the work to construct the Ab lists isn’t zero. However, we
can pipeline this work, with a small part of the chip constructing each Ab for the next j. The
more significant cost is that this doubles the space requirement for the A arrays.

2.2 Another approach: Lim and Lee
The basic algorithm in Wesolowski’s paper seems to be a clever sparsified version of a
standard algorithm from the literature, normally called “BGMW”, after the authors Brickell,
Gordon, McCurley and Wilson [BGMW92]. Another algorithm that was published at a similar
time appears in Lim and Lee [LL94]. Interestingly, both of these algorithms were patented
in the US; I think the latter expired in 2015. Bernstein points out in a preprint, [Ber02], that
they are both special cases of a (complicated!) construction by Pippenger [Pip80].

The Lim and Lee algorithm computes gR for a group element g and exponent R. To do so, it
splits up the exponent, R, of length n into h large blocks of length  = n/h. Each of these is
further subdivided into  blocks of length b = / (to keep notation clean, we hide all the
floor and ceiling operations, pretending that everything divides exactly). Imagine stacking
the large blocks on top of each other to form a rectangle with h rows ( bits wide each) of
 columns (b bits wide each).

Firstly, values g0, . . . , gh−1 are computed where g = (g−1)2

. These would be computed

by the evaluator and passed to the prover. The other pre-computation is the values:

G[0][] = geh−1h−1 g
eh−2
h−2 · · ·g

e1
1 ge00

for  = 0, . . . ,2h where the sequence of e’s is the binary expansion of , followed by

G[j][] = (G[j − 1][])2
b
= (G[0][])2

jb

for j = 1, . . . ,  and  as before.

P0137-R-004b Page 6 of 15

VDF proof feasibility study

With these in hand, the exponentiation can be written

gR =
b−1
∏

k=0

−1
∏

j=0

G[j][j,k]

!2k

where j,k < 2h is the index from reading off the vertical row of bits at the k’th bit of the
j’th column in the rectangle. As usual, the exponentiation can be evaluated efficiently by
nested squaring. The resulting algorithm is shown as Algorithm 5.

z← 1;
for k← b − 1 to 0 do

z← z2;
for j←  − 1 to 0 do

z← z ·G[j][j,k];
end

end
Algorithm 5: Lim and Lee’s algorithm

The only significant storage is for the pre-computed G[j][] results. There are 2h of them.
The number of operations for the algorithm (not including pre-computation) is + b, which
is more helpfully written (1 + 1/)n/h.

At first, the pre-computation looks challenging: given just the gm results from the evalua-
tor, a naïve algorithm to calculate the G[j][] looks like it might take h multiplications to
compute each G[0][], then b =  squarings to compute each corresponding G[j][]. In
total, this gives (h+ )2h group operations. Although this can be done incrementally while
the evaluator is at work, this is still far too much work: the evaluator only needs to do
n = h group operations and, while this calculation is more parallelisable, for most h it will
be significantly more work.

However, this calculation is pessimistic. Instead of just passing powers g2
m

, the evaluator
could pass all powers g2

mb
(these correspond to the small chunks of R). Instead of comput-

ing powers of G[0][], when the prover gets g2


where  = +b, this is (g)2
b

and the
prover can just multiply each G[][] by the value received if bit  is set in . This takes
2h−1 multiplications for each checkpoint.

P0137-R-004b Page 7 of 15

VDF proof feasibility study

3 Practical considerations for implementing the prover

3.1 Getting blocks of bits from the division
In both algorithms from Wesolowski’s paper and in all algorithms that we have come up
with, there is the basic structure shown in Algorithm 6. The get_block function gets k bits
of b2τ/Bc, starting at the given bit index.

for j←  − 1 to 0 do
...;
for ← bτ/kc to 0 do

b← get_block( + j);
...;

end
...;

end
Algorithm 6: Calls to get_block

To implement get_block, an implementation can use the Euclidean algorithm, which is
basically the same as doing long division in base 2k. It would start by skipping a few bits
to get to position τ/k + j, then read k bits and skip k( − 1) bits each iteration. Since  is
very large (of the order of 106) in all the implementations we consider, this can’t work by
running through the skipped bits with the Euclidean algorithm: the chip would spend all its
time skipping bits through the division.

However, skipping a block is the same as multiplying by 2k and then taking the remainder
modulo B. This means we can skip all the blocks we need by multiplying by 2k(−1) mod B
and taking the remainder. Since this number can be computed with O(log(k)) operations
at the start of the computation, this approach is much more efficient.

This multiplication still isn’t fast enough to do as we go, though: all the algorithms we
consider just do one other operation per block, so the latency of the modulo multiplication
would be too much. To get around this, we could store an array of remainders on-chip, one
for each . Each such remainder is 128 bits in size, taking the same storage as τ/(16k)
group elements. Computing the initial values for the remainder takes O(τ/k) operations.
Since this is much less than O(τ/k) for all implementations that we consider, we’ll ignore
this cost when calculating run times below.

3.2 Parallelism when multiplying by pre-computed results
The amount of work for each candidate algorithm has the form τ/k + ƒ (k, ) operations
where ƒ depends on the algorithm. Assuming that ƒ (k, ) isn’t too large, the division by k
implies a factor of k speedup. However, the largest possible values of k are of the order of
ten so this isn’t enough for the factor 100 speedup required. To get the other factor of ten,
we need to find scope for parallelism. This can come from pipelining large multipliers and
increasing the clock speed and/or from using more than one multiplier.

In all the algorithms before Algorithm 4, the τ/k term in the complexity comes from multi-
plying some yb in place by C. While doing so, successive iterations of the loop can go in
parallel if each  corresponds to a different value of b.

To calculate the cost of stalls, note that there will usually be p pipeline stages, each calcu-
lating a result for a different b. Suppose these values of b are numbered b1, . . . , bp. If a
new input has b = bp, the machine must stall for one cycle while the final pipeline stage
clears. If it has b = b1, the machine must stall for p cycles.

P0137-R-004b Page 8 of 15

VDF proof feasibility study

Since the pipeline entries are distinct, the probability that b matches just stage  is 2−k for
all . As such, the expected number of stall cycles is

E(stlls) = 2−k (p + (p − 1) + · · · + 1) = p(p + 1)2−(k+1) (1)

This decreases with k and increases with p and is large enough for values of interest that
collisions might defeat our parallelism. For example, if the pipeline to load a value yb,
multiply by C and store the result again took 10 cycles, we would have p = 10 even with
only one multiplier. Even with a large value of k like 10, Equation 1 shows a slowdown of
around 5%. With smaller values of k the collision rate is higher still.

We can avoid this problem with a two-entry queue at the front of each multiplier. This
would hold two pairs (, b). With a pair of comparators for each pipeline stage, the multi-
plier could make sure it fetched an entry with a b that wasn’t currently in flight whenever
one was available. This is analogous to a reservation station in an out-of-order processor.
Calculating the stall count symbolically is fiddly, but a quick simulation shows a slowdown
of just 0.17% with p = 10, k = 10.

Lowering k or increasing p does increase the stall rate again, although this effect can be
softened by using a larger buffer. For example, suppose there are two multipliers with
pipeline depth 10 processing half of the b’s each. This corresponds to decreasing k by one.
With a two-entry buffer, the stall rate is about 0.5%. Increasing to three entries drops it to
0.025%.

In a later section, we explore the multiplier architecture for the chip. It seems likely that
we’ll have to tolerate a latency of not 10 cycles but several thousand. This means that
algorithms that update yb’s in place just won’t work.

3.3 Parallelism in algorithms 2 and 3
As mentioned earlier, there is a problem with the second loop in Algorithm 2 because
successive values of t and  depend on each other, which means a pipelined approach
won’t work without some changes.

Writing N = 2k as before, split the range 1, . . . , N − 1 into two halves: 1, . . . , N/2 − 1 and
N/2, . . . , N−1. Suppose we accumulated  and t over each of the halves separately, ending
up with (o, to), (h, th) for the low and high ranges, respectively. Then the product that
we actually want to compute is given by  = ho(th)N/2−1. To see this is correct, expand
each of the accumulators as

h = yN−1(yN−1yN−2) · · · (yN−1yN−2 · · ·yN/2)
o = yN/2−1(yN/2−1yN/2−2) · · · (yN/2−1yN/2−2 · · ·y1)
th = yN−1yN−2 · · ·yN/2

and note that we are multiplying by th for each factor in o in order to extend that factor
all the way up to yN−1, as it appears in the original formula.

Splitting the range in half would work if the pipeline depth was only two. For a pipeline of
depth p, we can split the range into p parts analogously, ending up with (0, t0), . . . , (p−1, tp−1)
working from low b to high b. For m between 0 and p− 1, write nm for the number of terms
accumulated into m and tm. This will be approximately (2k − 1)/p, but giving it a name
lets us write a clean formula even when p doesn’t divide 2k − 1 exactly. Combining the
partial products at the end gives a product of the form

′ = (p−1p−2 · · ·0)(tp−1)np−2+···+n0(tp−2)np−3+···+n0 · · · (t1)n0

and the loop finishes with ←  · ′.

P0137-R-004b Page 9 of 15

VDF proof feasibility study

This trick works for Algorithm 3 as well: each m should be initialised to the previous value
of .

3.4 Parallelism in Algorithm 4
The group operations in Algorithm 4 also occur in a tight loop, but these can also be
pipelined. To achieve a pipeline of length p, we must accumulate p − 2 values of b at
once. Write b =

∏

∈Ab C. Then the pseudo-code accumulates tb =
∏

b′≥bb into variable
t at iteration b. The pipelined code would have a schedule that accumulated into p − 2
different b’s. When one was complete, it would be stored into a reorder buffer. Next in
the schedule, the algorithm would update  if necessary with the current t and finally it
would take a newly computed b (in descending order of b) and update t with it.

While this scheme achieves the parallelism needed, the b that was accumulated is exactly
the same as the yb accumulated in earlier algorithms, and the multiplication to update t
has come back! For large values of p, this also means quite a lot of (less parallelisable)
work to recombine the results. However, this work can actually be done outside the outer
loop. The total memory cost probably ends up higher than earlier algorithms (you have to
store the arrays, A, and also p accumulators). However, it is very parallelisable and can
tolerate any p that divides 2k.

3.5 Parallelism in Lim and Lee’s algorithm
Lim and Lee’s paper addresses parallelism explicitly (in section 5). The basic idea is to split
up the inner loop (for j = 0, . . . , − 1) across the available processors and then accumulate
at the end. The accumulation at the end is the same as we’d do in Algorithm 4 (described
in the previous section). This means that we’d need p to divide  which in practice might
mean lots of storage (since it scaled as 2h).

P0137-R-004b Page 10 of 15

VDF proof feasibility study

4 ASIC multiplication architectures

Building a digital circuit to do modular exponentiation fast seems to be a well-studied prob-
lem: it’s needed for RSA, so any cryptography co-processor ends up doing this operation.
Unlike the evaluation algorithm considered in Geza’s report, the proof algorithm exposes
lots of parallelism so we can optimise for throughput rather than latency.

There is a slew of papers about designing hardware to do Montgomery multiplication (or
exponentiation). Unfortunately, most of them are quite hard to translate into numbers that
will help us. There are two problems. Firstly, many of the papers concentrate on bit-lengths
much less than 2048 (presumably because most people who encrypt stuff with RSA at the
moment use shorter primes).

Secondly, almost all of the papers give experimental results from FPGA implementations.
Converting from counts of LUTs and DSP blocks to gate counts is not really possible because
one 6-input LUT might be used as an inverter, and the next as a general 6-bit lookup table.
We might need to sketch out an actual implementation to get good estimates from these
papers.

One recent reference with actual ASIC numbers is [KWL16]. This tabulates relative perfor-
mance of different carry-save adder designs for 2048-bit group elements. Their numbers
show that their multipliers will only work if we can tolerate vast parallelism: the designs
have a latency on the order of 1700 cycles for 2048-bit group elements. When synthesised
in the 90nm TSMC process, they claim a critical path delay of 4.4ns, which corresponds to
a clock frequency of about 230MHz. The quoted area is about 1mm2. In a 16nm TSMC
process, this might be a factor of 20 smaller1, giving an area of about 0.05mm2. Estimat-
ing how the path delay would scale is harder, but we might hope for a factor of 2 or 3
frequency increase to maybe 500MHz.

Assuming a clock frequency of 500MHz and a size of 0.05mm2 for each multiplier, this
approach yields about 6 × 106 ops /sec /mm2. This throughput is only marginally higher
than the 5 × 106 ops /sec /mm2 implied by the estimates in Geza’s report.

Another paper with gate numbers is [MMM04]. These report a multiplier that uses around
3.3×105 gates for 2048 bit group elements. This will be about 0.04mm2 in a 16nm process.
They don’t give a critical path delay for any technology, but it is very short so their design
can probably run at 1GHz, taking one cycle per bit. With a bit length of 2048, this works
out at 11.8 × 106 ops /sec /mm2. It might turn out that the critical path is so short that
the design can be implemented doing two steps per cycle. This wouldn’t really affect the
throughput estimate, but it might not halve the clock speed, so the latency and thus the
parallelism required would probably decrease.

These numbers should probably be interpreted as lower bounds: Montgomery multiplica-
tion can use a Karatsuba-style architecture to improve its asymptotic performance. It’s not
clear what is the minimum bit width where this starts to help, but we think that 2048 bits
might be enough. Unfortunately, we couldn’t find pre-existing papers with performance
numbers.

1TSMC’s 90nm libraries typically quote a gate density of around 4 × 105 gates /mm2. Their 28nm libraries are
more variable, but have a density around 4 × 106 gates /mm2. Exact numbers for the 16nm libraries are even
harder to find, but news articles quote a doubling in density from 28nm.

P0137-R-004b Page 11 of 15

VDF proof feasibility study

5 Capping the speed of an ASIC

Assuming that the high-level protocol will work by rewarding the fastest VDF evaluators,
if the Ethereum foundation make ASICs available, they might want to stop users from
overclocking them.

To do this, the ASIC needs to have some way to measure its clock frequency and stop
working if the frequency is too high. A purely synchronous digital circuit has no notion
of its clock frequency. To get such a notion, the circuit would need some sort of internal
oscillator. This wouldn’t need to be the actual frequency reference, but the chip could peri-
odically compare that with the internal oscillator and disable itself if the external frequency
reference appeared too fast.

We searched through the literature for information about on-chip oscillators and there seem
to be two main approaches:

1. MEMS-referenced PLLs

2. Self-referenced CMOS oscillators

MEMS-referenced PLLs consist of a MEMS device that resonates at some fixed frequency,
with the period divided down by PLL logic. This is a mature technology, but seems mostly
to be sold as separate oscillator chips.

We don’t believe that a MEMS-referenced PLL really makes sense for this application. While
they might be integrated in a package, the MEMS resonators are actually produced as sep-
arate dies. See Figure 1 for a die photograph. One concern is that a sufficiently determined
attacker might open a package and replace the MEMS resonator with a faster one. This
seems difficult, but might be easier than building another ASIC. Also, it may not be possi-
ble to integrate the PLL circuitry on the same wafer as the main digital design, which makes
the attack much easier (since now the attacker just needs to switch some bond wires and
a resonator).

Figure 1: A MEMS-based resonator, showing the MEMS die itself with supporting circuitry
(in 180nm CMOS).[PSL+12]

Early self-referenced CMOS oscillators worked by free-running an LC oscillator on the die

P0137-R-004b Page 12 of 15

VDF proof feasibility study

(at over 1GHz) and then dividing the frequency down. With process trimming and inbuilt
temperature compensation, this allows a stable 10-200MHz reference. A presentation from
McCorquodale at the 2009 IEEE Radio Frequency IC symposium [KH09] describes the state
of the art at that time.

More recent papers show that people are working on integrating the oscillators into digital
processes. Unsurprisingly, there are no papers with actual implementations at the really
recent process nodes. At larger sizes, there are papers like Huang and Wentzloff [HW14]
(130 nm) who use an RC network and actually fabricated a test chip (see Figure 2 for a die
photo). At more recent nodes, we could only find simulation results. For example, Lahiri
and Tiwari describe a 30MHz ring based oscillator at 28nm [LT13], but only have SPICE
simulations and no test chip. They claim 0.57% accuracy across the industrial temperature
range: maybe something like this could work for Ethereum.

Figure 2: An RC-based resonator in 130nm CMOS.[HW14]

If Ethereum did intend to integrate something like this into their ASIC, the least risky ap-
proach would be to actually integrate several competing oscillator designs. The most stable
one that worked could be enabled with OTP bits. Of course, this means that the ICs com-
ing out of the fab wouldn’t be hobbled and there would be a risk of unscrupulous parties
getting hold of them before they were calibrated.

P0137-R-004b Page 13 of 15

VDF proof feasibility study

6 Conclusions and future work

This report has investigated the algorithmic complexity of several approaches to imple-
menting a prover. There isn’t a clear winner, because there are space/time trade-offs
between them and the choice of the most appropriate algorithm depends on the size and
latency of the multiplier used.

It seems like there’s quite a bit more work to do in order to choose a multiplier. We believe
that we could get some performance estimates from carefully studying existing papers,
but accurate gate counts might even need a trial implementation. Maybe there would be
mileage in reaching out to the papers’ authors, asking for RTL.

Once we know more about the right multiplier, it should be easy to take the estimates
in section 2 to work out the appropriate architecture. This ends up as an optimisation
problem: Decide on the required throughput. For each algorithm, choose the tuning pa-
rameters (usually k and ) that minimises the area for logic and storage combined. Choose
the algorithm with the smallest value.

P0137-R-004b Page 14 of 15

VDF proof feasibility study

References

[Ber02] Daniel J. Bernstein. Pippenger’s exponentiation algorithm, 2002.

[BGMW92] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast
exponentiation with precomputation. In Advances in Cryptology – EUROCRYPT
92, 1992.

[HW14] Kuo-Ken Huang and David D. Wentzloff. A 1.2-MHz 5.8-μW temperature-
compensated relaxation oscillator in 130-nm CMOS. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 61(5):334–338, 2014.

[KH09] Waleed Khalil and Ahmed Helmy. Wsb: Current and future trends in frequency
generation circuits. In 2009 IEEE Radio Frequency Integrated Circuits Sympo-
sium, 6 2009.

[KWL16] Shiann-Rong Kuang, Kun-Yi Wu, and Ren-Yao Lu. Low-cost high-performance
VLSI architecture for Montgomery modular multiplication. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 24(2):434–443, 2016.

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precompu-
tation. In Advances in Cryptology – CRYPTO 94, 1994.

[LT13] Abhirup Lahiri and Anurag Tiwari. A 140μA 34ppm/°c 30MHz clock oscillator
in 28nm CMOS bulk process. In 2013 26th International Conference on VLSI
Design and 2013 12th International Conference on Embedded Systems, 1 2013.

[MMM04] Ciaran McIvor, Maire McLoone, and John V McCanny. Modified Montgomery
modular multiplication and RSA exponentiation techniques. IEE Proceedings-
Computers and Digital Techniques, 151(6):402–408, 2004.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal
on Computing, 9(2):230–250, 1980.

[PSL+12] Michael Perrott, Jim Salvia, Fred Lee, Aaron Partridge, Shouvik Mukherjee,
Carl Arft, Jin-Tae Kim, Niveditha Arumugam, Pavan Gupta, Sassan Tabatabaei,
Sudhakar Pamarti, Haechang Lee, and Fari Assaderaghi. A temperature-to-
digital converter for a mems-based programmable oscillator with better than
±0.5ppm frequency stability. In 2012 IEEE International Solid-State Circuits
Conference, 2 2012.

[Wes18] Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint
Archive, Report 2018/623, 2018. https://eprint.iacr.org/2018/623.

P0137-R-004b Page 15 of 15

https://eprint.iacr.org/2018/623

	Introduction
	Possible algorithmic improvements
	Schemes based on Wesolowski's paper
	Another approach: Lim and Lee

	Practical considerations for implementing the prover
	Getting blocks of bits from the division
	Parallelism when multiplying by pre-computed results
	Parallelism in algorithms 2 and 3
	Parallelism in Algorithm 4
	Parallelism in Lim and Lee's algorithm

	ASIC multiplication architectures
	Capping the speed of an ASIC
	Conclusions and future work

